A genome-wide analysis of the auxin/indole-3-acetic acid gene family in hexaploid bread wheat (Triticum aestivum L.)
نویسندگان
چکیده
The Auxin/indole-3-acetic acid (Aux/IAA) gene family plays key roles in the primary auxin-response process and controls a number of important traits in plants. However, the characteristics of the Aux/IAA gene family in hexaploid bread wheat (Triticum aestivum L.) have long been unknown. In this study, a comprehensive identification of the Aux/IAA gene family was performed using the latest draft genome sequence of the bread wheat "Chinese Spring." Thirty-four Aux/IAA genes were identified, 30 of which have duplicated genes on the A, B or D sub-genome, with a total of 84 Aux/IAA sequences. These predicted Aux/IAA genes were non-randomly distributed in all the wheat chromosomes except for chromosome 2D. The information of wheat Aux/IAA proteins is also described. Based on an analysis of phylogeny, expression and adaptive evolution, we prove that the Aux/IAA family in wheat has been replicated twice in the two allopolyploidization events of bread wheat, when the tandem duplication also occurred. The duplicated genes have undergone an evolutionary process of purifying selection, resulting in the high conservation of copy genes among sub-genomes and functional redundancy among several members of the TaIAA family. However, functional divergence probably existed in most TaIAA members due to the diversity of the functional domain and expression pattern. Our research provides useful information for further research into the function of Aux/IAA genes in wheat.
منابع مشابه
Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome.
More than 50 leaf rust resistance (Lr) genes against the fungal pathogen Puccinia triticina have been identified in the wheat gene pool, and a large number of them have been extensively used in breeding. Of the 50 Lr genes, all are known only from their phenotype and/or map position except for Lr21, which was cloned recently. For many years, the problems of molecular work in the large (1.6 x 10...
متن کاملEvolution of physiological responses to salt stress in hexaploid wheat.
Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a syn...
متن کاملThe efficacy of Cot-based gene enrichment in wheat (Triticum aestivum L.).
We report the results of a study on the effectiveness of Cot filtration (CF) in the characterization of the gene space of bread wheat (Triticum aestivum L.), a large genome species (1C = 16,700 Mb) of tremendous agronomic importance. Using published Cot data as a guide, 2 genomic libraries for hexaploid wheat were constructed from the single-stranded DNA collected at Cot values > 1188 and 1639 ...
متن کاملAssessing genetic diversity of promising wheat (Triticum aestivum L.) lines using microsatellite markers linked with salinity tolerance
Narrow genetic variability may lead to genetic vulnerability of field crops against biotic and abiotic stresses which can cause yield reduction. In this study a set of 37 wheat microsatellite markers linked with identified QTLs for salinity tolerance were used for the assessment of genetic diversity for salinity in 30 promising lines of hexaploid bread wheat (Triticum aestivum L.). A total of 4...
متن کاملIdentification and characterization of genes on a single subgenome in the hexaploid wheat (Triticum aestivum L.) genotype 'Chinese Spring'.
Gene loss during the formation of hexaploid bread wheat has been repeatedly reported. However, our knowledge on genome-wide analysis of the genes present on a single subgenome (SSG) in bread wheat is still limited. In this study, by analysing the 'Chinese Spring' chromosome arm shotgun sequences together with high-confidence gene models, we detected 433 genes on a SSG. Greater gene loss was obs...
متن کامل